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Crack length
Williams' stress function expansion coefficients
Matrix element

Gage width for edge cracked gage and center cracked gage,
respectively

Constant

Expansion coefficient

Young modulus

Strain

"loading vectox"”

Body fources

Half length of the cracked edge in a trapezoid gage

Hali length of the uncracked edge opposite to crack edge in
a trapezoid gage

Reissner's functional

Stress Intensity Factor

Length of stepped gage

Half total length of a stepped qgage

Half number of terms in stress and displacement expansion
Number of cycles

Number of nodai points on edge
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Radial coordinate in polar system

Surface

Flexibility Matrix
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U Displacement

v Volume

W Strain energy density
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Subscripts
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o] Outer segment

r Radial direction

s Structure

T Traction only prescribed
Tu Traction and displacement prescribed
u Displacement only prescribed
Superscript
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AbstracE

A cracked metallic coupon, called crack gage, is being considered
as a device for monitoring crack growth in aircraft structures. For
this purpose, a stress intensity factor soluticn for the gage has to
be known.

This study provides stress intensity factor soluticns for two basic
geometric configurations subjected to prescribed displacements.

1. Edge cracked, trapezcidal shaped gages of uniform thickness.

2. Center cracked gages with varying or stepped thickness.

For the trapezoid, the influences of changing the length of the
cracked edge, while other edge remains constant, and vice versa, were
investigated. The results obtained do not show significant keneficial
changes in stress intensity factor fo» the range of parameters con-
sidered over those of rectangular gages.

Stress intensity factors were determined for stepped gages of
various geometries. Various thickness ratios, length ratios and aspect
ratios were considered, including the specific geometries of two gages
now under development. In each case, the stress intensity factor was
determined as a function of crack length.

Stress intensity factors were found to increase as the cracked
center portion was made thinner, and as the length of the outer section
was increased. The stepped gage was found tc have the potential for
tailoring the stress intensity factor. Finally, analytical results

cf stress intensity factor were found to show good agreement with exper-

imental results.




EFFECT OF GEOMETRIC VARIABLES ON STRESS

INTENSITY FACTORS FOR CRACK GAGES

I. }gg;oduction

Background

The concept and the requirements for safety, durability and men-
agement of military aircraft structures arc summa -ized by Coffin and
Tiffany (Ref 1). As reflected there, the Gurability analysis as well
as scheduled maintenance for the structure are based on some assumed
usage of the fleet., Usually the actual usage of an individual air-
craft and the fleet will differ from the usage for which the aircraft
was designed. 1In order to provide updated usage data for force manage-
ment, MIL STD 1530A(11) (Rel 2:23-~25) requires establishing aircraft
structures tracking programs. Such a program provides baseline oper-
ational load spectra for average fleet wusage as well as an Individual
Airplane Tracking (IAT) program, which provides crack grcwth information
concerning each individual aircraft. The IAT is the feedback link
necessary for the scheduling of structural maintenance.

A typical, current technology, IAT program is that of the F-4
aircraft. This program was developed as part of the Damage Tolerance
Assessment Study for F/RF-4 C/D and F-4E(S) aircraft (Ref 3, 4). The
program uses as tracking devices counting accelercmeters installed on
each aircraft and flight data recorders installed on 12% of the fleet.
A crack growth analysis is performed for critical structural locations.

Stress exceedances spectra for each critical location and for different




usage categories were developed from the flight recorded data. These
spectra along with counting accelerometer exceedances readings are
used to determine the stress history at critical locations. Using
these, a crack growth analysis for an individual aircraft may be per-
formed.

This tracking system, described in more detail in other places
{Ref 3, 4, 5, 6:64-66), is very indirect in defining stresses and in-
volves many sources for error. Further, the enormous amount of data
to be collected in order to get the stresses adds to program cost. A
device, the crack gage, has bheen propcsed which might provide a more
direct and efficient technigue for use in IAT programs. It has been
estimated that using crack gages in the F-4 IAT program might save

7.7 million dollars in five years (Ref 6:79}.

Crack Gage Concept

A preliminary concept of a crack gage was patented by Smith (Ref 7)
in 1976. A more practical concept for using a crack gage for monitoring
structure crack was introduced by Crane, Gallagher and Grant (Ref 8).
Figure 1 shows the concept of the crack yage. It consists of a pre-
cracked thin metallic sheet with ends bonded to a structure. Since the
structure and the gage will be exposed to the same load history, it is
possible to relate the crack growth in the structure to that in the
gage., The readily observed crack growth in the gage can then be used
as a prediction of crack growth in the structure.

Efforts in various directions were made in evaluating the crack
gage concept since it has been introduced. Torvik (Ref 9, 10) developed

an analytical solution for the strecss intensity factor for displacement
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controlled, edge cracked gages., Ori (Ref 11) and Ashbaugh and Grangdt
(Ref 12) evaluated the concept using both edge cracked and center
cracked gages.

Stepped center cracked gages are now being investigated under
two U.S. Air Force contracts, one with Boeing Wichita (Ref 13) and one
with McDonnell Douglas Corporation (Ref 14). The contract with McDonnell
Douglas will provide evaluation of a center cracked stepped gage on a

F~4 aircraft during a full scale fatigue test.

Statement and Scope of Problem

It has been obsexrved (Ref 9, 10) that relatively high stress inten-
eity factors for an edge cracked rectangular gage may be obtained if
the gage is long, but the magnitude then varies considerably as the
crack grows. On the other hand, constant stress intensity factor vs
crack length may be obtained for relatively short gages, but the gage
sensitivity is then very low. For analytical purposes, such as pre-
dicting the remaining life of a structure, a constant stress intensity
factor vs crack length is desired. It was suggested that an edge-cracked
gage of a trapezoidal planform might satisfy the requirement for a
higher, but constant K; vs. crack length, since the "effective" length
of the gage could vary as the crack grows. The stepped gage was also
considered since the thicker section serves as an amplifier of the
strain in the cracked section from the far field valie. The gain may
be controlled by varyinig the thickness ratios and length ratios of
the segments of the gage.

The gages that had been developed for the activities previously

mentioned were basically developed empirically. 1t became apparent




that an analytical method that could be used to obtain stress intensity
factor solution for stepped center cracked gages was required. Gages
with different stress intensity factor sensitivities are required so
that the gage can be matched to the specific usage, i.e., apélying
gages of very high sensitivity to structures to be subjected to a large
number of cycles.

In this study, a means of cbtaining analytical predictions of the
stress intensity factor for the two geometries, trapezoidal planform
and stepped gages, is developed. These methods are applied to the design
of crack gage and the results for the stepped gage were experimentally

verified.
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II. Stress Intensity Factor Solution for a Cracked
Flat Sheet Subjected Eg_Mixed Boundary Conditions

Introduction

A method utilizing Williams' (Ref 15, 16) stresc functions along
with energy principles was developed by Torvik (Ref 9, 10) to obtain
a stress intensity factor solution for a finite, cracked elastic shecet,
Solutions were provided for a rectangular edge cracked sheet subjected
to mixed boundary conditions. Part of the boundary was subjected to
prescribed tractions as shown in Figure 2A, herein referred to as the
type l-mixed boundary condition. The solution for a center cracked
sheet, which is the center section of the stepped cracked gage, led to
a different mixed boundary conditZon, herein referred to as type 2,
and shown in Figure 2B. For this problem, a part of the region of the
physical surface is subjected simultaniously to prescribed tractions
as well as to displaccments. A brief outline of the method developed
by Torvik (Ref 9, 10), for the type l-mixed boundary condition problen,
and the necessary extension for the type 2-boundary condition problem,

will be presented here.

Method 22_501ution

Consider a thin elastic sheet for which plane stress conditions
hold, with a crack, starting at an edge. A coordinate system is set
with origin placed at crack tip. The crack faces are located at fO=i7
0sr<a, and are firee of tractions. Williams (Ref 15, 16) has shown
that for an infinite domain, stress fields can be obtained by using a

stress function of the form

xte, 8, A =Y ree, N (1)
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(a) Type 1, Mixed Boundary Corditions
- No mix between prescribed traction and displacement on same region
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v (b} Type 2, Mixed Boundary Ccnditions
- Prescribed stresses and displacements on same region

Figure 2. Mixed Boundary conditions Problem.




A=m/2 form=1, 2, 3, ... (2)

The stress function may be divided into even and odd parts. Since
the geometries of interest for this study are symmetric in respect to

X axis, only the even part of the stress function is of interest., 1In

y
e ———— e

addition, displacements corresponding to the stress function may be

found from

' 3
2w, = ~ §§ + (1 - s)r%%- (3)
L 2w = -2 A2 W (4)
i r 36 or .
% Y = shear modulus s = V/1+v Vv = Poisson ratio
! a ,
< 7y = — 5
X ar(rgg) (5)

The even parts of X and Y , as well as the corresponding

stresses and displacements, are shown in Appendix A, Each stress and

displacement is made up from an even and an odd part. As stated by

e
Torvik (Ref 9:3-4, 10), the stresses ¢ and the displacements U may
i be represented in the form:
m
Orr vM‘ crr

L %0 | = / dn * | %e (6)
, I
1 m
i °re mm=l Ore

——

where each o™ satisfies field equations and the traction free require-

ment on the crack face, and




Each of U™ satisfies strain displacement equations and stress

{ strain laws, and the arbitrary coefficients &, are related to the

| ‘; stress and displacement functions coefficients presented in Appendix

A as Am through the relation
dy = Ay, d3 = ~Ap, d3 = -Aj3, dgq = Pg, d5 = Ag, dg = -Ag, etc.
In order to find a stress intensity factor, defined as,

K = lim{v2mr' O (0 = 0,r)} (8)
>0

el e o -

it will be required to find the stress ogg for a certain boundary
condition problem. More specifically, the coefficients 4, in Egq (6)

are to be obtained,

AR £ i MK TN - s o

After applying the limit procedure, the only term to remain is
v' the one multiplied by d; . All other terms vanish since they include

@ rP expressions, p’l/2. Hence,

Ky = V21 A = -/2m 4 (9 5
- |
The solution of the coefficients for a mixed boundary condition of
| ! . type 1 was given by Torvik (Ref 9:20-21, 10) utilizing Reissner's prin-
ciple. The interpretation of Reissner's principle by Fung (Ref 17:299-
300) is that the surface S enclosing the domain V , can be divided

into sp and s, , where tractions are prescribed on Sp and displace-

W ments on S; . A more general interpretation will be presented here.

In the type 2 mixed boundary condition, a surface region Cg, on
A the surface S can be subjected simultaniously to prescribed tractions

ﬂ and displacements as well. Hence, it may be considered a subset of Sp

as well as Sy ¢ with the relations:




R VP U

-l

S = Sqp+ 8§, (10)
Sp = Cp + Cpy )
Sy = Cy + Cp, (12)

where Cq is the region where only tractions are prescribed, and Cu
is the region where only displacements are prescribed.

Consider the functional (essentially Reissner's function)

J -f[ W(ej4) - FyU;lav —/oij leg4 - 1/2(034 + Uj'i”dv -
v

v
- [ Ti* UidS - / Uij \)j (Ui - Ui*) ds (13)
S Su

Where stresses, displacements and strains are to be independent vari-
ables, and Oij=0ji. The elastic equilibrium will be obtained by setting
J =0, or J will be stationary with J = 0., The gj are introduced as
Lagrange multipliers.

20W

v v

-f cdaeij - 1/2(<Sui'j + ‘SUj,i”d" -[ Ti*GUjds -
v St

-[ §(v4044)*(Uy - U;*)dS - [ vjoijd u,ds (14)
Sa Su

Rearranging and applying the divergence theorem to third integral, we find

v v

v

- 1/2(01,;} + Uj,i)]dv +/vjoijSUids -[ TIGUids -
s Sq

-[ (Ui - Ui*)aTde - TiGUidS (15)

10




Realizing that the first three integrals represent the stress-strain

law, equation of equilibrium and strain displacement equation respec-
tively, they may be omitted from Eg (15) if we choose the stresses to

be represented by Eq (6), and displacements by Eq (7), along with the

i
1 s 2
i corresponding strain.

Eq (15) reduces to:

J(vjoijavids -J[ Ti*GUids i}f (Ui -~ Ui*)STids —)( TiGUidS=0 (16)
S ST Su Su

Caw Ll

[ (Ti - Ti*) &Jids -[ (Ui - Ui*) GTidS =0 (17)
i S’l‘ Su

Applying Egs (11) and (12)

[ (Ti - Ti*)GUidS -[ (Ui - Ui*)-cs'rids +
Cp cu

T,. - *). A iy - X)) . = 18
, *fc [ Ty Vg 7 gy T VY ‘ST(:)]dS ° a8
Ta
where j#i, and the parentheses indicate suspension of the summation

convention, On Cp, , one component each of displacement and traction

are given.

Eq (18) may be used to find a Ky solution for problems with mixed

boundary condition of type 2.

Use now the stresses and displacements as defined in Eq (6) and (7)

to find variations of stress and displacement,
1

M

R p
Gcij ™~ EEE dpoij (19)

p=l

11




i P
! GUr M Ur

2y = stp (20) 5 l

, =1 u, P

- -

Substituting Eqs (6), (7), (19) and (20) into Eq (18):

'1 M

} \ m 1 Q:ﬁ
. f [y ), i3 = Ta™ 5L, Op0s71es -
. : CT m= P=l

R G S

M
- > mo_ . P -
f [¢ dei 2uUl*)ij<Sdpoij lds ~+
c, ™= p=l

M
1 P

+- (v, Z Oqys- T :"—ZdeU- -
3Ly 4033~ T3 = (1)

(]
Tu

. M M

1 1 m §: ) -

( - = U, .. - 20, *)v, 84, s=0 21
2 Ly & T MG 2% (e (1)

0 , p#q, §dp =:1

sirce 8dp is arbitrary, make the choice §dp

if p=q and then:

~ ¢ M M.
m q m =
f (vjz dmoij )u;~ ds f ( =1mUi )vjcijqu =
' Cp CRFL cuw‘;u
= o1, 33e - a01.93¢ - q - .
f T, *+U; “dS [ {T,*-U;"as 24U, *Ty lds 2Jc U * Tiqu
_ Cr Cru u (22)

Eq (22) may be represented as:

M
) Z &Py = Fq (23)
o=l

where Apq is a symmetric matrix.

12
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leA m L

" %

= m m . g m q _
Ang . é(vrorr * V0, 0 VU, + (VO o+ veoee)ue]ds
T+ Tu

_ m q q m q q
fc LE (Vy0rg *+ VgOgg ™) + Uy (V0" + Veore )las (24)

utCru

The reader is reminded that only one product of force and displacement

is to be evaluated in the contribution of Cp, to each of these integrals.

Fq = f ('r*rurq + Te*Ueq)dS - 2{ (ue*'req + U_*T Lhas -
c c
T u

- 2y 9 * q - xm 9 * q
[ ['rr U,* + Tg*Ug 2u(ue'1'e + U3T ylas (25)
Cru
Since the displacements are prescribed elsewhere, the crack tip
has to be allowed to translate. Thus, as stated (Ref 9:20, 10), we may

introduce a translation term into the expansion, which will be

0

2w, = doUi = dycosH (26)
0 .

2y = dgu; = -gypsind (27)

0 0 .
with Opy ¢ oeeo . Ore being zero.

By solving Eq (23) along with Eqgs (24) and (25) for the coefficients,

dﬁ a solution for a finite, two dimensional, cracked elastic sheet with
mixed boundary conditions of type 2 is obtained, Note, that by elimi-
nating the integral on Cru region, we get a type 1 mixed boundary
problem, and Amq and Fq will have the same form as shown (Ref 9:23, 10)
previously.

Since the particular gage geometries for this study are the trap-
ezoidal gage and the stepped gage, the formulation for getting Ag

and Fq for these geometries will be shown.

13
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The basic boundary conditions for the trapezoicdal gage arc essen-
tially as shown in Figure 2a, and the formulation was presented (Ref 9:

23, 10).

g
]

23/}(Ux*cose + Uy*sine)(vrorrq + veocgq)+

+ (-U,*sind + nycosG) -(\)roreq + \)gceaq)]ds (28)
When evaluating Anq for the discussed geometry, crack faces axe free
of traction. The first integral of Eq (24) will be evaluated on edged
1 and 3, while second integral will be evaluated on edge 2.
The case with boundary conditions stowr in Figure 2b represenis the
center portion of the st2pped gage. Edges 1 and 2 are part oif Cp ,
where tractions are prescribed, while edge 3 is pari of O,

Taking into account koundary conditiors, only a part of the integral

Cp, exists on edge 3. DPue to boundary condition przsentation, Ang
and Fq will be represented in cartesian coordinates, and Ey (24)
becomes
_ q m g [ el | m g ’
Ang -[ [Tibx + TyIUy]dS + [Tyuy - UXTx]ds (29)
“Cyp Cru

Wwith Cy = 0 , and with the prescribed variables on Cp, substituted
into Eq (25), we get
ro=| (r_*ud + 7 2% as - (30)
q x X Yy ¥

Cp

Those last two equations will be used to solve the stepped crack gage

stress intensity problem.

14
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IIT. Stress Intensity Tactor Solution for A Tyapezoidal,
Edge Cracked Crack Gage with Prescribed End Displacements

The edge cracked rectangular gage has a tendency to give low stress
intensity factor values for short gages, while the sensitivity improves -
for relatively long gages (Ref 9:34-46; 10). This has also becn ob-
served in experiments (Ref 6:73). The disadvantage of long gages is |
that Ky does not remain ccnstant and even decreases as crack grows. 1

This property is not desired for a crack gage. It was thought that

giving the gage a trapezoidal shape as shown in Figure 3, a better con-
trol on the Xy wvariation with crack growth, and a higher Xy might
/

be achieved.

27k R b e

The suggested configuration consists ¢f a thin gage bondzd to a

[V

structure along the line AR. The structure is lozded by stress UOg

and displacements are transferred Lo the gage through line AB. The
stress intensity factor solution for this case was obtained by using

the method snown in Section II. Using Eg {28) along with Egq (24},

o A S Fati s e sl a4,

L]

Eq (23) gives a soluticn for the coefficient dj .

The prescribed dignlacemcents are

5

{

. ;
fo] §

* S i

|

U = —xv 25 (32) !

x E H

of S 3
‘s :
‘, where y = Ha - tga*( - x) and v=.3 . (33) "?

The matrix ALq Was evaluated by a computer program (see Appendix

B) using an expansion of thirty-six coefficients, including these for
i

rigid body displacements. The integration was performed over 300 ;

boundary points. The variables for this study werc chosen to be the
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angle a , which was assumed to control Ky changes as the crack grows,
and also to control the magnitude of K; , since the gage length dimen-
sions are changing. Former results for a rectangular gage (Ref 9:34,
10) indicated that a gage with an aspect ratio of 2 Hy/b=2 might be a
good one for the study, since K; for that gage was fairly constant

as crack length, a , increased.

Results and Discussion

Non-dimensional stress intensity factor results for Hg/b=1 are
presented in Figure 4. It can be observed that changes in o in the
range of 160° -~ 200° have a very little influence on the magnitude of
Ky . The yeneral behavior of Kp vs. a improves a little and for
o = 200°, Kl/osvb is almost constant on the range .4<a/b<.8.

Results for Hy/b = 1 are presented in Figure 5. It can be cbserved
that in comparison to former results the changes in K; are relatively
large as o changes from 165° to 195°. This can be related to the
fact that under the displacement loading, the KI will be more sensitive
to length changes on Hg than on H, since the former directly affects
the crack opening, and Ky may be considered proportional to crack

opening.
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IV. Stress Intensity Factor Solution for a Stepped
Center Crack ~ Crack Gage, with Prescribed End Displacements

The stepped center crack gage concept is described in FPigure 6.
The gage consists basically of three segments. The center segment of
reduced thickness which includes the crack, and two thicker end seg-
ments.

Part of each thicker segment is bonded to the structure, and a
part (of lengtl. Lg) is free. It is assumed that the gage is clamped
to the structure along lines AB and GH. This assumption is only an
approximation since the actual load traansfer from the structure to the
gage should be modeled as loads transferred through springs, where the
adhesive layer is the spring element., However, the exact model was
beyond the scope of this study. Displacements of line AB relative to
line 0~0 are assumed to be transferred completely to the gage with nro
losses in the bond line, i.e., the bond line does not rotate.

Due to the symmetry, the center segment of the gage neads to be
solved only for a quarter of the plate, as shown in Figure 7. The
entire outer segment, shown in Figure 8, was analyzed in order tc obtain

better accuracy with the finite element analysis.

Methods 9£ Solution

Two analytical methods will ke used to obtain the complete solution.
The Finite Element Method will be applied to solve forces and displace-
ments of the outer segment of the gage and the method descriked in
Chapter II will be used to solve for stress intensity factors, stresses
and displacements for the center szgment. Bowie et al (Ref 18:767-772)

introduced also the idea of getting stress intensity factors by using a

20
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stitching technique. They used one analytical method to solve stresses
and displacements for cracked and uncracked part. By stitching the
solutions stress intensity factors were found for center cracked uni-
form thickness plate subjected to uniform stress loading.

Since the line CD is actually the connecting line between the
two segments, we will demand displacements and forces produced by the
two methods to be equal on this line. Let the line CD be discretized
into 2n elements, cach of length Dx. Each element will be represented
by a nodal point, considered to be at the center of the segment, at
which forces and displaccments are assumed to be applied.

The outline for the solution is as follows:

vy} = (U} + {ug} (34)

where U* , U, are the prescribed relative displacement of line AB
{(Figure 6) and relative displacement of line CD with respect to inertial
frame x, y, respectively. Uo is the relative displacement of line AB
with respect to CD. Using flexibility matrix of center segment [S_] ,

and flexibility matrix of outer segment [Sg] , we have

{ucl = [sc) {pc} (35)
{u} = [sol {r,} (36)
Opn line CD, the forces {Po} = {Pc} (37)

After substitution

et = fisol + tsel) tec (38)

All the forces and displacements are expressed by x and y direction
components consequently all matrices are partioned and the number of

rows or columns is twice the number of nodal points under consideration,
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Suppose a unit load is applied to each element of the center seg-
ment, successivley. Using the technique described in Chapter II, the
coefficients of the expansion may be solved for each loading case.

From the coefficients solved for a wnit load at nodal point k, the

first is of particular interest and will give the stress intensity

t factor for unit load at nodal point X . When we repeat the procedure

for all nodal points, we may construct an array {D} whose k'th element

e

is the contribution of load at point k to the stress intensity factor.
The stress intensity factor for the center segment under uniform dis-
cretized unit load is obtained by summing the elements of {D}. If the
load at each nodal point is different, the stress intensity factor

solution may be written as:

kr = 2m{p}T e} (39)

or, 7

Ky = 2m{D}T[Isc+ [s, 11 Hu*) (40) 1

Thus, the solution for the stepped gage with prescribed end dis-
placements requires that the flexibilities[ S.]} and [Sg] be determined.

A prescribed stress T* , on k'th element, Dx long, may be con- %
verted into a "concentrated" stress at the nodal poin% Xy Producing

, a unit force per unit thickness by defining a loading function.

TH = 68(x ~ xx) Ty = S(x ~ xx) (41)

80 as to produce an unit force in each coordinate direction on any
element, centered on xj

X+ x/2

8(x = xp)dx = 1 (42)
Xx=Dx/2
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For simplicity a unit thickness is considered. The vector Fy

can be computed by Eq (30), with displacements evaluated at xy .

The matrix Apnq can bé evaluated by Eq (24) and the system of equations
can be solved for the coefficients 4, by usirg Eq (23). With the
set of coefficients known, the actual displacements at every otler
nodal point 1 can be evaluated. By repeating the procedure for
k = 1...n, we contruct the flexibility matrix [S.], along with the
array (D! which is constructed from the coefficients d; for each of
k load points. The flexibility matrix [Sc] is actually factored such
as to account for actual thickness ratio between center and outer seg-
ments of gage. The outer segment flexiblity matrix is contructed by

using "ANALYZZ" (Ref 19), a finite element analysis computer program

developed at the Air Force Flight Dynamics Laboratory. The matrix was

established by constraining one end of the segment completely to simu-

late the bond line, and the other end was loaded with unit forces at

discrete points.

Numerical Evaluation

The problem introduced for the center segment was solved by com-

puter programs which are described in Appendix B. The objective of the

program was to evaluate the matrix Amq , given in Eq (29), to sclve

Eq (23) for the coefficients, and to construct the flexibility matrix

[sé] in the manner previously described.
The matrix Apg was evaluated by a numerical integration along

edges 1, 2, 3, using Simpsons' third rule. The boundary was divided

into 300-400 points. A slight sensitivity to the number of integration

points was observed (for short, L.} when elements of different lengths

were used to perform the integration on separate edges.




=i

The number of terms, M, used for the expansion was 18, The number

of nodal points used on edge 2 was 20. Consequently, the flexibility
matrixes were dimensioned 40x40, partioned into x and y components.
The flexibility matrix of the outer seqgment was developed for a
whole outer plate, and the corresponding 40x40 matrix, [So}' was
extracted.
The prescribed displacement U* was chosen to be 1 in longitudal
y direction and zero in x direction, As has been shown, releasing
the transverse constraints would have little effect on results (Ref 9:
32, 10), since the stress intensity factor is driven primarily by
displacments perpendicular to crack plane-

Stress intensity factors were computed for center segments having

lengths:

The outer segments having lengths
Lo = 1.0; 1.267; 1.6; 2.0; 4.0
and for the thicknese ratios
te/tg = .23 .5: .75
The width in all cases was taken to be b=2.0.
Stress intensity facors were not calculated for all combinations of

variables.

Results and Discussion

A sample of the results of a convergence study for the stress in-
tensity factor solution of the center segment with 12, 18 and 24 terms
is presented in Table I. No significant changes for more than 18

terms vere observed, The nwiber of nodal points N, was varied throuah
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A
: 10, 20, 30, 40 and results for stress intensity factors are compared

’ . in Table IT for a/b = .2; .6. A rapid convergence may be observed

for n >10. Using results for 40 nodes as a reference, 10 nodal points i

&

give about 63%, and 20 nodal points give 94% of the reference value

for a/b = .2. For a/b = .6 the results for n = 20 is 98% of the

g g
[ -y A

result obtained using n = 30. The convergence for longer cracks seems

to be better, since the relative error of load fraction distributed

o

fb | over the crack (governed by element size) is smaller for long cracks.
3 ' The stress intensity factor solution obtained for the uniform
b discretized stress loading on the central segment is given in Table

III, and is compared to published results for a uniform stress loading

(Ref 20:11). Table III shows that present results are low by five
percent, a factor that may be attributed to the number of nodal points.

{
) In order to check the overall approach cases of to/tg = 1 were

run. This case is actually a case of a center crack gage with uniform
m | thickness and half length of L, + L,, subjected to prescribed displace-
ments at the end. Comparison to published results (Ref 20:16) indicated
that present results are within 10-15% higher than published for the
same aspect, ratios, and uniform thickness.

Due to the fact that the gage is constructed from relatively short

plates, the finite elements solution was checked thoroughly, and re-

p]

sults were found reasonable (see Appendix C). However, the finite ele-

ment analysis was performed on a complete outer segment instead of a
half since the displacements results were more reasonable in this con-
figuration.

During the center segment analysis, attempts to invert the flexi-

bility matrix were made and difficulties encountered. However, no
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Table I

Convergence of Stress Intensity Factor

Ky/0gvb
Lo = .4 b = 2,0 n = 20
ME* = 12 M= 18 M= 24
1.2620 1.2660 1.2662
*n = number of nodal points on half width
**M = nunber of terms in expansion
2M = number of coefficients in expansiocr
Table II
Convergence of Stress Intensity Factor
K;/0gvb
Lo = .4 b = 2.0 M = 18
a/o n =10 n = 20 n = 30 n = 10
2 .8497 1.266 1.322 1.30

.0 6.607 6.731

N
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Table III

Stress Intensity Factor for Stress Loading - Comparison
with Published Results

L./b = .5 Rcoke (Ref 20)
KI/OSVb {Data transferred to
Present Results same nondimensional
a/b Discrete load form)
2 .84 .88
.4 1.70 1.78
.6 3.15 3.28

explanation for this difficulty was found. The final results, as well
as the intermediate results of the analysis, were wlthin reasonable
agreement with other published results. Thus, the flexibility matrix
was accepted in spite of the unexplained difficulty in computing an
inverse.

Figures 9 through 19 show the stress intensity factor results
obtained in this study. One of the gages (L /b = .2 Lo/b = .63
to/to = .5) was developed by McDonnell Douglas Corporation as part
of the evaluation of the crack gage on F-4 full scale fatigue test
(Ref 14). Another gage (Lo/b = .625 Ly/b = .625 tco/to = .2) wvas
developed by Boeing Wichita as part of contract F33615-77-C-~5073 (Ref
13) . The results are given in a nondimensionalized form (KI/os/b)
(Eg/Eg) vs. a/b, where Jg 1is the stress of the carrying structure
at the bond line, such that a longitudinal displacement

u* = -%?i Lp (43)
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is transferred to the gage, b is the width of the gage and a is
the length of the crack. Figure 9 shows the typical benefits of the
stepped gage compared to a gage with uniform thickness. For the same
aspect ratio, i.e., 1.5, the stepped gage gives a 40% higher stress
intensity factor and is more constant. Furthermore, the range of
stress intensity factor available to choose for a specific need with
geometrical restrictions is very large. Figures 10 through 18 show
that stress intensity factor will grow as thickness ratio will de-
crease, and as L, grows for a given L, . Figure 19 is typical,
showing the effect of change in thickness ratio change while the
length ratio is held fixed. It may be observed that changes in length
ratios of center and outer segment appear to change the magnitude and
the shape of SIF vs. a/b, while thickness changes will affect primarily
the magnitude only. It was found that for a thickness ratio less than
tc/to = .1, the stress intensity solution is as if the prescribed dis-~
placement was applied directly to the center segment.

For fast approximations of the stress intensity factor, the following

equation may be used (see Appendix D for details).

to

a_v/B\ E; A)E/% Lo. Lo b=ad + V/(1-v )Lc] (44)

In this equation, Rice's (Ref 22) limit values for K; in a
short infinite strip with a semi~infinite crack is encountered. The
values of Kp obtained by this approximation are within 10-15% lower
than the actual solution, for a/b > .6. The approximation was verified
for values of t./to, and L/L, in the range investigated, and is suggested
as a rapid means of obtaining a trial design with desired stress intensity

factor.
31
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V. Experimental Results

The methodology for the verification of analytical results of
stress intensity factor for center cracked stepped gage is based on

Paris' law.
da/aN = c(A)™ (45)

Where a is the crack length; N the number of loading cycles; C, n

the material constants and AK is the difference of stress intensity
factor for each loading cycle. If we measure da/dN in an experiment,
we can find AK , provided the material constants C and m are
known. When conducting a constant amplitude stress cyclic test with
R=0 where R is Cmin/cmax/then AK becomes actually the stress inten-
sity factor. This sort of test is to be designed such that no retar-
dation effects will be experienced during the test. A series of experi~
ments were designed to check the analytical results of this study and
in addition were a part of the evaluation of the crack gage designed

by McDonnel Douglas for the F-4 full scale fatigue test., Due to
technical difficulties, this test program is not completed and inter-~
mediate resglts are not reported. However, Boeing (Wichita) as part

of contract No. F33615-77~C-5073 (Ref 13) has conducted a series of
base line tests and constant amplitude stress crack growth test for

a similar stepped crack gage. Since their data was applicable for
verification of the results presented in this study, raw data was ob~
tained and reduced to compare to analytical results to be mesented.

The material used for the Boeing specimens was 7075-T651 aluminum.

The Paris' law constants were found to be C = .1479*10—14 and m =

43

= 2.49145




where the units of da/dN and Ak are in/cycle and psi*J;;, respectively.
base line data was fit to equation (45) with a computer program pro-
vided by Dr. Ashbaugh and Dr. Grandt from AFML (Ref 23). This program
uses Feddersen's formula modified by Tada (Ref 21:2.2) to evaluate

R; for a center crack coupon. The gage shown on Figure 20, was bonded
to the carrying specimen, shown in Figure 21, by FM-73 adhesive. Con-
stant load amplitude tests were conducted with Og = 10,000 psi and

R = 0., Crack growth vs. cycles was recorded. From a vs. N data, da/4dN
was calculated and by applying Paris' law, Ky was determined. The
results shown in Figure 22 were taken from two different tests employing
six gages, and where gages were located back to back on the carrying
specimen. The first test carrying specimen, AFPCG-1l, included two of

the gages. On the second test specimen, AFCG05, four gages were bonded
to the carrying specimen. The graphical results of Figure 22 show very
good agreement between test and prediction. It has to be noted that
there is significant scatter in the experimental results, as is to %
be expected. Scatter is inherent in this experimental procedure due
to variation in materials, loading accuracy, crack length reading and

differentiating procedure used to obtain da/dN,
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VI. Conclusions and Recommendations

This study provided methods for obtaining stress intensity factors
for trapezoidal planform gage and stepped gages. For the stepped gage
solution, a method was developed using Reissner's principle along with
finite element techniques which proved to give satisfactory results,
as verified by test. t was clearly demonstrated that the stepped
gage can be designed to have stress intensity factors within a wide

range.

Conclusions

1. The trapezoid shaped edge cracked gage has no significant
advantage over rectangular gages.

2. The method of solution introduced for stepped gages has beexn
shown to be suited to the aralysis of these geometries with good
accuracy.

3. The stepped center crack gage provides a convenient moens for
obtaining desired stress intensity factors due to the relative case
with which substantial changes in Ky may be obtained by varying the
geometry, and is to be preferred to other geometric shapes which have

been considered for the crack gage.

Recommendations

1. It is recommended that the analytical results presented in
this study be verified by further testing of stepped gages of other
geometries.

2. It is recommerded that the K; solution method for stepped

gages introduced be included in crack growth prediction models so as

48
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to provide an analytical model for crack growth prediction for
{ crack gages under load sequence mere complicated than constant

amplitude.
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: Appendix A

Stresses and Displacements as Result Sf;
Williams' Stress Function

N For the symmetric type problems introduced, only the even part

of williams' stress function is of interest and may be expressed as:

!
T Xe = (—lnﬁlAzn__lrmhl/z{— cos(n - 3/2)0 + 2n - 3 cos(n + 1,/2)0} +
- : 2n + 1
i "
oo
; ) + (-l)nAznrn+1{— cos(n ~ 1)8 + cos(n + 1)0} (46)
Cprr 060« 0‘r6 are found by:
2
, 1 9%X 1 9
) O'rr = -—5- :_e + - _);_E (47)
! r BLs] r Y
2\
096 =9 Xe (45)
2
91
92 ?
g r 3rdg r2 36
(-1) 132y n=1 (0 = 3/2)¢(n - 1/2)»

Org(1) = 2

o {sin{n + 1/2)0 - sin(n - 3/2)0} (50)

rg(2) = (-1)“r“'1A2n(n){(n + 1)sin(n + 1)6 = (n - 1)sin(n - 1)8} (51)

Or0 = %%0(1) * Yro()
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n-lrn—3/2

Oppqyy = 1) By o lltn = 3/2)2 = (n + 1/2)]cos(n - 3/2)6
= (n~3/2)(n - 1/2) cos(n + 1/2)6} (53)
Orr(z) = (-l)nrn-lAzn‘{[(n - l)2 - {n+ 1)Jcos(n - 1)0 -
- n{n + 1l)cos{n + 1)6} (54)
Orr = Orr (1) * Opr(2) (55)
- - n - 3/2
Ogg = (_1)n lrn 3/2113?n_1(n + 1/2){n - 1/2)’{;f:‘I7§ cos{n + 1/2)6 -
(1) '
- cos(n - 3/2)0} (56)
o = D% Al () o+ 1){cosfn +1)6 - cos(n - 1)} (57)
00(2) ~ o 2n
= 8
%0 = %oyt %00(2) (58)

Solving the equation

2 3 awe
v Xe = 5;-(r 36—0 (59)
get as a result
n_3/2 - 2 - + l 2 2
v, = (_l)n"l r — & .[(n 3/2) (n /2) sin(m - 3/2)0] +
n - 172 2n-1 n - 3/2
n=1 - ‘2 - 1\2
poen® T et = p DT o (60)
n 2n n-1
Substitute in
9Xe

- 3y
2uU,. = + (1 - —L 61)
vl ( s)r ) (

r or
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3 o
2w = - 1L 4 g (62)

36 or

V = Poisson ratio s = v/(1 + V),

u shear modules.

As a result:

- - 1 -
2pUr(l) = (-n" lrn 1/2A2n_l{[(n+ 1/2) +(;ﬁrfaéﬁ(n - 3/2)2 -~ (n -~ 1/2)%]'
*cos(n - 3/2)6 - (n - 3/2)6cos(n + 1/2)0} (63)

1 ~
n

WUy (2) = (DA, ([ + 1) + (D[ - D - (n+ D]

*cos(n - 1)0 ~ (n + 1l)cos(n + 1)0} (64)
2uY, ?“(Ur(l) + Ur(z)) (65)
_ r-1 n-1/2 . } -5
2uUe(l) = (-1) r Ayt Bn=372) + n - 1/2

*f(n - 3/2)2 - (n + 1/2)%] gin(n ~ 3/2)0 + (n - 3/2)sin(n + 1/2) 8}

(66)
l~s 2 2 .
200 oy = (-1)“r“A2n{[-(n - 1) 4+ “[tn-1°=(n+1°1]
*sin(n - 1) + (n + 1) sin(n + 1)@} (67)
2uU0 = ZU(UO(l) + UO(:)) (68)
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Appendix B

Description of Computer Proaram

Three computer programs used to generate the stress intensity
factor in this study will be described here. Program COEFDT was used
to solve the trapezoid case. COEFINA was used to provide the solution
for the center seqment of the stepped gage. Program TAYLOR was used
to match the segments of the stepped gage. A few subroutines are
common to both COEFDT and COEFINA. The subroutines and parts of COZFDT
and COEFINA were developed by Torvik for a previous analysis (Ref 9,
10).

Subroutine DPrsI

In this subroutine tangential displacements in Fgs (66), (67) are
evaluated. The results are transferred to the main program as for
Eq (66) and Eq (67) separately.

Subroutine DR

In this subroutine radial displacements as in Egs (63), 4) arc
evaluated.

Subroutine SPR

This subroutine evaluates radial stresses as in Eq (53), (54).
Subroutine STT
This subrcutine evaluates tangential stresscs as in Egs (56), (57).

Subroutinq_SRT

This subroutine evaluates shear stress as in Egs (50), (51).

Program COLFDT

This program evainates the matrix Apg as in Eg (24). The eval-
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uation is done for each of the three edges of the three separately,
and the results added to produce the required matrix element. The
evaluation is made first on the uncracked edge, and last on cracked
edge. Then ~fq 1is evaluated on edge 2 via Zg (25). Finally, the
system of Eq (23) is solved for dp, and d; is the desired result.

Program COLF1NA

This program evaluates the matrix Amg via Eg (29) in th= same
order as done in program COEFDT. The wvactocr Fg is evaluated on edge
2 via Eq (30) by moving a unit load from one nodal point to *he other.
Fg 1is evaluated n times as the number of nodal points. Solution
of Eg (23) each time gives finally an array {D} of coefficients 4, .
In parallel to the above described procedure, the program constructs
the flexibility matzix [Sc] for the center segment.

Program TAYLOR

This program evaluates K; via Eg (40).
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Appandix C

3
3

(SN

Finite Element Solution

st

The flexibility matrix for the cuter segment of thc gage was
obtained by using a slightly modified version of the finite element -

analysis program "ANALYZE" (Ref 18). The problem was solved with a

. -
iy

e

-
2l

mesh that consisted of 452 nodes and 441 elements. The elemants used

B
Y

were quadrilateral and triangular membranes. Mesh organization and

boundary conditions are shown in Figure 23. As a check of the solution,

displacements of the "pullad® edge ware examined. The displacements at

the edges looked extrea:ly high in comparisen with displacements at

the center, but were found to agree with a second solution obtained l
! through NASTRAN. Since in our case we have a very short membrane,

width = 4, L =1.9; 1.27; 1.6; 2.0; 4.C; and t, = .08, it was suspected

that the restraint in the x direction has an effect of singularity.

To check this point, the restraints in the x direction at nodes 1,

441 were released and then all restraints in x direction, except at .

the mid-node 221, were released. This wodification did not change

the results significantly, as can be seer in Figure 24. This suggests

that no singularity effects were introduced by the x direction restraint.

Figure 24 also shows the displacement variation as the length of the

R

-t

membrane grows.
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Appendix D
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Stepped Center Gage ~ Stress Intensity
Factor Approximate Eguation
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Figure 25. Schematic Stress Distribution at Crack Tip
. of stepped Gage

Using the relationship between stress intensity factor and stress,

on the line y = 0, we get:

KI

V21K (69)
-]L
| and the force Pa produced over the uncracked region will be
3
b-a
/’ 2K
ra = —— t_d (70)
A J V2mx 172 © X
ﬁ o
i B.
Pa = /-~ vb-a K (71)
V2 te K
60




This force will produce an average displacement on the outer segment

of
PL PaLo
UO = 29 - (72)
AOEO b'toEo

The displacement of the center segment, may be approximated by using
Rice's (Ref 22:249) result for an infinite strip with semi-infinite
crack,

1/2
KI[(l - vz)Lc] /

c = (73)
E
The total displacement may be expressed as
Upot = Uc *+ U, (74)

On the other hand, Utot bProduced by the displacement of the

bond linewith the carrying structure is

L %

tot ol

(75)

Substituting and rearranging and making a nondimensional stress
intensity factor, normalized with respect to the nominal stress in the

structure we get:
Ky Lo + Lg _

ggb  h[/8 vb-a™+ /(1-—\)2)Lc] (76)
T

o lot"
o |d”
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